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AEBSTRACT

[nc.uding covariant information, such as position. force, velocity ar spin 1s impor-
laal 1 rmany esss incompulaional physics and chemistcy. We nitodwee 3 ecrable
E(3) Equivariart Graph Neural Notworks (SEGNNs) that geacralise cquivariant

graph networks, such that node and edge attributas are not restricted to invariant

Classic point convolutions

{Lecture 1.7: regular g-convs on homogensous spaces)

(Lecture 2: steerable g-convs)
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invariant Message Passing NNs

{Lacture 3)

mU = MLP(fp fs"X] — xi”)

wealars, hat czn contzin covariant mbormanion, snch ag vectors or tensors. Thig
model. comrposed of steerable MLPs, 1s able to incorporate geometric and physical
information ix buth the messaye ad update functons. Through the defimten of
stecrable node attributes, the MLPs previde a new class of activation functions
for general use with st2erable festure fielcs. We discuss ours and related work
throng the lens ot eguivariant nondinear comolunons, which tu-ther allows ns 1o
pin-pont the successful components of SEGNNs: non-linzar message aggrezat.on
improves upon classic linear (stecrablke) 2oint convolutions; sievialle messages
improve upon recent cquivariart graph networks that sead mvaran: messages. We
demonstrate the effectivaness of our method on several tasks in computational
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physics and chemistry and pravide eytensive abhlation smdies

1 [INTRCDUCTION

The suecess of Convolutional Nearal Networks (CNN:) (LeCun et al|, 1998;/2015; Schmidhuber,
2015; Krizhevsky eta’., 2012) is a key factor “or the rise of deep leamning, attributed to their capability
nf exploiting translation symmetries, herahy intrviucing a strong inductiva hias. Recen” wnrk has
shown tat designing CNINs o explol: addidonal syirmetrdes via groap corvoludons has even further
axcreased el pecfozmarce  (Cobea & Welling, 2016, 2017, Worzall et al., 2027, Coliea e, al.,
2018; Kondor & Trivedi, 2018; Weiler at al., [ 201%; Bekkers et al | 2018 Bekkers, |2019; Weilar &
C2sa, 2016) Graph neural networks (CNNs) and CNNs are closely related to 2ach cther viz their
aggregatinn of local information. More precisely, CNNs czan be formnlated as message passing
-ayzrs (Gllmer 2t al |, 2017) based on a sum aggregatcn of messages that are obralned by relative
positior-dependent linear trensfarmations of neighbourirg ncde features. The power of message
passmn layers is, however, that nods features cre transformed and propagated in a highly non-lincar
manner. Equivariant GNNs have b2en proposed bafore as either Poin:Conv.type i(Wu et al | 2319;
Kristn™ ot al | 2017) implementations of stzerahle [Thomas ef al | 20 % Andarson et al | 2019 Fiochs
et el., 2020) ar regular group canvoludions (Finzl e &l | 2020). The most impartant ccmpenent in
29 these methods arc the eonvolution leyers. Althougk powerful, such leycrs enly ipscudd'| lincarly
transform the graphs ard non-lirearity i only obtaired via point- wise activations

'Methods such as SE(2).transformers (Fuchs et al | [2020) and Cormorant [Andsmon et 2l 2019) nzlide an
mput-dependent aveaticn componeat thal augments the convolutions.
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Linear vs Non-linear & Regular vs Steerable

Recall lecture 1.7:
“Any equivariant linear layer between
feature maps on homogeneous spaces
IS a group convolution”

Table 2: Performance comparison «
Error (MAE) between model predics

Task 8] Ae EHOMO
Units bohr’ meV  meV _
non-linear no geometry NMP 092 69 473 %
regular R® SchNet * 235 63 4] o
pseudo-linear steerable SE(3) Cormorant 085 61 34 O
steerable SE(3) LI1Net 088 68 46 %
regular G LieConv 084 49 30 0
steerable SE(3) TFN 223 58 40 =1
pseudo-linear steerable SE(3) SE(3)-Tr. 142 53 35 g
non-linear regular  RIx S X R* DimeNet++ * 043 32 24 o
non-linear regular R%x §?x RY SphereNet * 046 32 273 Z
non-linear  reguleerable? SE(3) PaiNN * 045 45 27 <
non-linear regular R® EGNN 071 48 20 ©

hon-linear steerable SE(3) SEGNN (Ours) .060 42 24
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Abstract

Ve introduce tensor field neural networks, which are locally equivariant to 3D
rotations, translatiors, and permutations of points at every layer. 3D rotation
equivariance removes the need for data auzmertation to identi’y features in arbitracy
orenudons. Our nework uses filters built from spherical harmonics] due wo the
mathematical consecuences of this filter choice, each layer accepts as input (ard
guaraatees as output) scalars, vecters, and higher-order tensors, ‘n the geometric
sense of these terms. We demonstrale the capabilities of tensor fie.d neworks with
tesks in geometry, physics, and chemistry.
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1 Motivation

Conwolutional neural networks are translation-equivariaat, waich means thal features can be identified
anywhere in a given input. This casabilty has contributed significantly to their widespread success.
In this paper, we present a family of networks that enjoy richer equivariance: the symmelries of 3D
Euclidean space. This inzludes 3D rotation equivariance (the ability lo identify a feature in aay 3D
rotation ard its orientaticn) ard 3D translation equivanance.

*Equal contributios.

Preprmt. Work 1a progress.
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IS a group convolution”

Table 2: Performance compar/si
Error (MAE) between model fore

Task
Units

no geometry NMP
R?> SchNet *
SE(3) Cormorant :
SE(3) L1Net 088 68 46
G LieConv 084 49 3(
SE(3) TFN 223 58 4(
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Abstract

We propose Cormorant, a rotationally covariant neural network architecture for
leaming the behavior and properties of complex many-body physical systems.
We apply these networks to molecular systems with two goals: learning atomic
potential energy surfaces for use in Molecular Dynamics simulations, and leam-
ing ground state properties of molecules calculated by Density Functional Theory.
Some of the key features of our network are that (a) each neuron explicitly corre-
sponds to a subset of atoms; (b) the activation of each neuron is covariant to rota-
tions, ensuring that overall the network is fully rotationally invariant. Furthermore,
the non-linearity in our network is based upon tensor products and the Clebsch-
Gordan decomposition, allowing the network to operate entirely in Fourier space.
Cormoranrs significantly outperforms competing algorithms in learning molecular
Potential Energy Surfaces from conformational geometries in the MD-17 dataset,
and is competitive with other methods at leaming geometric, energetic, electronic,
and thermodynamic properties of molecules on the GDB-9 dataset.

1 Introduction

In principle, quantum mechanics provides a perfect description of the forces goveming the behavior
of atoms, molecules and crystalline materials such as metals. However, for systems larger than a
few dozen atoms, solving the Schridinger equation explicitly at every timestep is not a feasible
proposition on present day computers. Even Density Functional Theory (DFT) [Hohenberg and
Kohn, 1964), a widely used approximation to the equations of quantum mechanics, has trouble
scaling to more than a few hundred atoms.

Consequently, the majority of practical work in molecular dynamics today falls back on fundamen-
tally classical models, where the atoms are essentially treated as solid balls and the forces between
them are given by pre-defined formulae called atomic force fields or empirical porentials, such as
the CHARMM family of models [Brooks et al., 1983, 2009]. There has been a widespread real-
ization that this approach has inherent limitations, so in recent years a burgeoning community has
formed around trying to use machine leaming to learn more descriptive force fields directly from
DFT computations [Behler and Parrinello, 2007, Barték et al.,, 2010, Rupp et al., 2012, Shapeev,
2015, Chmiela et al., 2016, Zhang et al., 2018, Schutt et al., 2017, Him et al., 2017]. More broadly,
there is considerable interest in using ML methods not just for learning force fields, but also for
predicting many other physical/chemical properties of atomic systems across different branches of
materials science, chemistry and pharmacology [Montavon et al., 2013, Gilmer et al., 2017, Smith
etal, 2017, Yao et al., 2018].

At the same time, there have been significant advances in our understanding of the equivariance
and covariance properties of neural networks, starting with [Cohen and Welling, 2016a,b] in the

33rd Conference on Neural Information Processing Systems (Newr[PS 2019), Vancouver, Canada.
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Abstract

We introduce the SE(3)-Translormer, a variant of the sell-atlention module lor
3D point clouds and graphs, which is egquivanant uader continucus 3D roto-
translations. Bquivarance is impertant W ensuce stable and prediclable perfor-
mance in the presence of nuisance transformations of the data inputl. A positive
corollary of equivariance is increased weight-tying within the model The SE(3)-
Transformer leverages the beaefits af self-attention to opzrate on large point clouds
aad graphs with varying number of points, while guaranteeing SE(3)-2quivanance
for robustness. We evaluate cur model on a toy N body particle simulation dataset,
showcasing the robusiness of the predicticns under rotations of the input. We fur-
tker achieve competitive performance on two real-world datassts, ScanObjectNN
asd QM3. In all cases, our model cutperforms a strong, non-ejuivariant attention
baseline and ar equivariant model without attenton.

1 Introduction

Self-attention mechanisms |3 1] have enjoyed a sharo rise in popularity ia recent years. Their relative
implementational simplicity coupled with high effcacy cn a wide range of tasks such as language
modcling [31], image rccognition [18], or graph-bascd problems [32], make them an altractive
componen: to use. However, their gererality of application means that for specific tasks, knowledg:
of existing underlying structure is unused. In this paper, we propose the SE(3)-Transformer shown 1a
Fig.[1] a self-attention mechanism specifically for 3D point cloud and graph data, which adheres to
equ'variance constraints, improving robustness to nuisance transformations and general performance.

Point cloud data is ubiquitous across many fields, presenting itself in diverse forrs such as 3D
object scars [29], 3D molecular structures [21], or N-body particle simulations [14]. Findinz neurel
structures which can adapt to tke varying number of points in an mput, while respecting the rregular
sampling of pointpositicns, 1s challenging. Furthermore, an important property is that these structures
should be :nvariaat to global changes in overall input poss; that is, 3D translations aad rotations of
the input point cloud should not affect the output. In this saper, we find that the explicit imoosition
of equivariance constraints on the sel-attention mechanism addsesses these challenges. Th: SE(3)-

‘Trasstormer uses the seli-attention mechanism as a data-dependent hilter particularly suted loc sparse,

non-voxelised pont cloed data, while respecting ard leveraging the syrimetries of the task at hand.

“equal contributon
'work done while at the Bosch Center for Artficial Intelligerce

34th Conference on Neura Informration Processiag Systems (NeurlPS 2020), Vancouver, Canada.
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Equivariant Message Passing for the Prediction of Tensorial Properties and
Molecular Spectra

Kristof T. Schiitt' > Oliver T. Unke'? Michael Gastegger '’

Abstract

Message passing neural networks have become a
method of choice for learning on graphs, in par-
ticular the prediction of chemical properties and
the acceleration of molecular dynamics studies.
While they readily scale to large training data sets,
previous approaches have proven to be less data
efficient than kernel methods. We 1dentify lim-
itations of invariant representations as a major
reason and extend the message passing formu-
lation to rotationally equivariant representations.
On this basis, we propose the polarizable atom
interaction neural network (PAINN) and improve
on common molecule benchmarks over previous
networks, while reducing model size and infer-
ence time. We leverage the equivanant atomwise
representations obtained by PAINN for the predic-
tion of tensorial properties. Finally, we apply this
to the simulation of molecular spectra, achieving
speedups of 4-5 orders of magnitude compared to
the electronic structure reference.

1. Introduction

Studying dynamics of chemical systems allows insight into
processes such as reactions or the folding of proteins, and
constitutes a fundamental challenge in computational chem-
istry. Since the motion of atoms is governed by the laws of
quantum mechanics, accurate ab initio molecular dynam-
ics (MD) simulations may require solving the Schrodinger
equation for millions of time steps. While the exact solution
is infeasible to compute for all but the smallest systems,
even fast approximations such as density functional the-

‘Machine Leaming Group, Technische Universitat Berlin,
10587 Berlin, Germany *Berlin Institute for the Foundations
of Leamning and Data, 10587 Berlin, Germany 'BASLEARN
— TU Berlin / BASF Joint Lab for Machine Leaming,
10587 Berlin, Germany. Correspondence to:  Kristof
T. Schutt <kristof schuett@tu-berlin.de>, Michael Gastegger
< michael. gastegger@tu-berlinde>.

Proceedings of the 38'" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

ory quickly become prohibitive for large systems and the
prediction of accurate spectra.

Recently, machine leaming potentials (Behler, 2016; Unke
et al., 2020; von Lilienfeld et al., 2020) have gained popu-
lanity for studying systems ranging from small molecules
at high levels of theory (Chmicla et al., 2018; Wester-
mayr et al., 2020) to systems with thousands or millions
of atoms (Morawietz et al., 2016; Barték et al., 2018; Lu
et al., 2020). In particular, message-passing neural net-
works (Gilmer et al., 2017) (MPNNs) yield accurate pre-
dictions for chemical properties across chemical compound
space and can handle large amounts of training data. Albeit
MPNNS5s have significantly increased in accuracy over the
years (as well as in computational cost), kernel methods
with manually crafted features (Chmiela et al., 2017; Chns-
tensen et al., 2020; Barték et al., 2010) have still proven to
perform better when only small training sets are available.

While molecules are often represented as graphs, they are
in fact interacting particles in a continuous 3d space. Con-
sequently, SchNet (Schiitt et al., 2017) modeled message
passes as continuous-filter convolutions over that space, al-
beit with rotationally invariant filters. As Miller et al. (2020)
pointed out, this leads to a loss of relevant directional, equiv-
anant information. Klicpera et al. (2020a) have introduced
directional message-passing, the angular information here is
restricted to the messages while the representation of nodes
(atoms) remains rotationally invariant. While equivariant
convolutions have been successfully applied in computer
vision (Cohen & Welling, 2017; Weiler et al., 2018b; Wor-
rall & Brostow, 2018), previous approaches to molecular
prediction (Thomas et al., 2018; Anderson et al., 2019) have
not reached the accuracy of their rotationally invariant coun-
terparts.

In this work, we propose rotationally equivariant message
passing and the polarizable atom interaction neural network
(PAINN ) architecture as one instance of it. We examine the
limited capability of rotation-invanant representations to
propagate directional information and show that equivariant
representations do not suffer from this issue. PAINN out-
performs invariant message passing networks on common
molecular benchmarks and performs at small sample sizes
on par with kernel methods that have been deemed to be
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UNITE: Unitary N-body Tensor Equivariant Network
with Applications to Quantum Chemistry
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Abstract

Equivasiant neural networks have seen successful in incorporating various types of
symmetrics, but are mostly limited to vector representations of geometric objects.
Despite the prevalesce of lugher-ueder casus i various application dossairs,
¢.g. in Juantum chemistry, equivariant neural networks for general tensors reman
underexplored. Previous sirategies for eaming equivananit functions or. tensors
mostly rely on expensive tensor factonization which is not scalable when the
dimensionality of the problem becomes large. In this work, we propose unitary
~N-body tenscr equivanant neural netwerk (UNITE), an architecture for  general
class of symmetric tensors called N-body tensors. The proposed neural network is
equivanant with respect to the actions of a unitary group, such as tae growp of 3D
rotatioas. Furthermcre, it has a linear time complexity with respec: to the number
of non-zero clements in the tensor Whea applied to quantum chemestry, UNiTE in
combiration with a low-cost physics-based mclecular representation outperforms
state-oi-the-art machine learning methods on multiple benzhmarks. Firally, we
show that UNITE achicves a robus: zero-shot gencralization performance on divenic
down stream chemiustry tasks, while beng thrze orders of magnitude faster then
conventional numerxal methods with competinve accuracy.

arXiv:2105.14655v3 [csLG] 250

1 Introduction

Geometnic deep learniag is fecused on building neural retwork models for geometric objects, and it
needs to encode the symmetnes present in the problem domain [1]. A gecmetric objec: is usvally
represented using a reference frame input to the neural network model. Symmetnies are incorporated
viathe concept of equivariance definzd as the property of being independent of the choice cf reference
frame.

One intuitive and common way to encode a geometric object is to represert it as the positions of a
collcction of points, 1.c. a scl of vectors. Examplces incdude paint clouds [2), grids [3) and mcshes
[4]. Many previous geometric learning methods, termed equivariant neural networks, have been
designed by considering how the vectors transform under symmetry operations on the reference
frames. These equivanant neural networks have successfully ‘bakec’ symmetries into deep neural
networks in varous application domains, such as autonomous driving [5) and molzcular design [6).

However, we 1dentify two remaining challenges that are not acdressed in prior woks:

Preprint.
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Abstract

Equivanant neural networks have seen successful in incorporating various types of
symmetries, but are mostly limited to vector representations of geometric objects.
Despite the prevalence of lugher-veder casus i various application dossairs,
¢.g. in juantum chemistry, equivariant neural networks for general tensors reman
underexplored. Previous sirategies for ecaming equivanant functions or. tensors
mostly rely on expensive tensor factonization which is not scalable when the
dimensionality of the problem becomes large. In this work, we propose unitary
~N-body tenscr equivanant neural netwerk (UNITE), an architecture for @ general
class of symmetric tensors called N-body tensors. The propoesed neural network is
equivanant with respect to the actions of a unitary group, such as tae grosp of 3D
rotatioas. Furthermcre, it has a linear time complexity with respec: to the number
of non-zero clements in the tensor Whea applied to quantum chemestry, UNiTE in
combiration with a low-cost physics-based melecular representation outperforms
state-o-the-art machine learning methods on multiple benchmarks. Firally, we
show that UNITE achicves & robus: zero-shot gencralization performance on diveric
down stream chemistry tasks, while beng thrze orders of magnitude faster then
conventional numerxal methods with competinve accuracy.

1 Introduction

Geometriz deep learniag is fccused on building neural retwork models for geometric objects, and it
needs to encode the symmetrnes present in the problem domain [1]. A geemetric objec: is usvally
represented using a reference frame input to the neural network model. Symmetries are incorporated
viathe coacept cf equivariance definzd as the property of being independent of the choice of reference

frame.

One intuitive and common way to encode a geometric object is to represert it as the positions of a
collcction of points, 1.c. a sct of vectors. Examplcs include paint clouds [2), grids [3) and mcshes
[4). Many previous geometric learning methods, termed equivariant neural networks, have been
designed by considering how the vectors transform under symmetry operations on the reference
frames. These equivanant neural networks have successfully ‘bakec’ symmetries into deep neural
networks in various application domains, such as autonomous driving [5) and mol=cular design [6).

However, we identify two remaining challenges that are not acdressed in prior woks:

Preprint.
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E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic
Potentials
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Mordechai Kornbluth,®* Nicola Molinari,’ Tess E. Smidt,*® and Boris Kozinsky*!-?
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i Harvard Universily, Cambridge, MA 02138, USA
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*Robert Bosch Research and Technology Center, Cambridge, MA 02139, USA
‘ Computational Research Diwnsion and Center for Advanced Mathematics for Energy Research Applications,

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
* Massachusetts Institute of Technology, Department of Electrical

Engineering and Compuler Science, Cambridge, MA 021482, USA

This work presents Neural Equivariant Interatomic Potentials (NequlP), an E(3)-equivariant
neural network approach for learning interatomic potentials from ab-tnatio calculations for molecular
dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions
and only act on scalars, NequlP employs E(3)-equivariant convolutions for interactions of geometric
tensors, resulting in a more information-rich and faithful representation of atomic environments.
The method achleves state-of-the-art accuracy on a challenging and diverse set of molecules and
materials while exhibiting remarkable data efficiency. NequlP outperforms existing models with
up to three orders of magnitude fewer training data, challenging the widely held belief that deep
neural networks require massive training sets, The high data efficiency of the method allows for the
construction of accurate potentials using high-order quantum chemical level of theory as reference
and enables high-fidelity molecular dynamics simulations over long time scales.

INTRODUCTION

Molecular dynamics (MD) simulations are an
indispensable tool for computational discovery in fields
as diverse as energy storage. catalysis. and biological
processes [113]. While the atomic forces required to
integrate Newton's equations of motion can in principle
be obtained with high fidelity from quantum-mechanical
calculations such as density functional theory (DFT),
in practice the unfavorable computational scaling of
first-principles methods limits simulations to short time
scales and small numbers of atoms. This prohibits the
study of many interesting physical phenomena beyond
the time and length scales that are currently accessible,
even on the largest supercomputers. Owing to their
simple functional form. classical models for the atomic
potential energy can typically be evaluated orders of
magnitude faster than first-principles methods, thereby
enabling the study of large numbers of atoms over long
time scales. However, due to their limited mathematical
form, classical interatomic potentials, or force fields, are
inherently limited in their predictive accuracy which
has historically led to a fundamental trade-off between
obtaining high computational efficiency while also
predicting faithful dynamics of the system under study.

) Corresponding authors
B.K., E-mail: bkoz@seas.harvard
S.B., E-mail: batzner@g.harvard.edu

The construction of flexible models of the interatomic
potential energy based on Machine Learning (ML-IP),
and in particular Neural Networks (NN-IP), has shown
great promise in providing a way to move past this
dilemma, promising to learn high-fidelity potentials
from ab-initio reference calculations while retaining
favorable computational efficiency [413|. One of the
limiting factors of NN-IPs is that they typically require
collection of large training sets of ab-initio calculations,
often including thousands or even millions of reference
structures (4, 9 10. 14/16]. This computationally
expensive process of training data collection has severely
limited the adoption of NN-IPs as it quickly becomes
a bottleneck in the development of force-fields for new
systems.

In this work, we present the Neural Equivariant
Interatomic Potential (NequlP), a highly data-efficient
deep learning approach for learning interatomic
potentials from reference first-principles calculations.
We show that the proposed method obtains high
accuracy compared to existing ML-IP methods across
a wide variety of systems, including small molecules,
water in different phases, an amorphous solid, a reaction
at a solid/gas interface, and a Lithium superionic
conductor. Furthermore, we find that NequlP exhibits
exceptional data efficiency, enabling the construction of
accurate interatomic potentials from limited data sets
of fewer than 1.000 or even as little as 100 reference
ab-inifio calculations, where other methods require
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Abstract

Equivanant neural networks have seen successful in incorporating various types of
symmetries, but are mostly limited to vector representations of geometric objects.
Despite the prevalence of lugher-veder casus i various application dossairs,
¢.g. in juantum chemistry, equivariant neural networks for general tensors reman
underexplored. Previous sirategies for ecaming equivanant functions or. tensors
mostly rely on expensive tensor factonization which is not scalable when the
dimensionality of the problem becomes large. In this work, we propose unitary
~N-body tenscr equivanant neural netwerk (UNITE), an architecture for @ general
class of symmetric tensors called N-body tensors. The propoesed neural network is
equivanant with respect to the actions of a unitary group, such as tae grosp of 3D
rotatioas. Furthermcre, it has a linear time complexity with respec: to the number
of non-zero clements in the tensor Whea applied to quantum chemestry, UNiTE in
combiration with a low-cost physics-based melecular representation outperforms
state-o-the-art machine learning methods on multiple benchmarks. Firally, we
show that UNITE achicves & robus: zero-shot gencralization performance on diveric
down stream chemistry tasks, while beng thrze orders of magnitude faster then
conventional numerxal methods with competinve accuracy.

1 Introduction

Geometriz deep learniag is fccused on building neural retwork models for geometric objects, and it
needs to encode the symmetrnes present in the problem domain [1]. A geemetric objec: is usvally
represented using a reference frame input to the neural network model. Symmetries are incorporated
viathe coacept cf equivariance definzd as the property of being independent of the choice of reference

frame.

One intuitive and common way to encode a geometric object is to represert it as the positions of a
collcction of points, 1.c. a sct of vectors. Examplcs include paint clouds [2), grids [3) and mcshes
[4). Many previous geometric learning methods, termed equivariant neural networks, have been
designed by considering how the vectors transform under symmetry operations on the reference
frames. These equivanant neural networks have successfully ‘bakec’ symmetries into deep neural
networks in various application domains, such as autonomous driving [5) and mol=cular design [6).

However, we identify two remaining challenges that are not acdressed in prior woks:
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A simaltansously securate and computatiorally ffciant paramatrization of the enesgy and atomic
forces of molecules and matencls 13 a long-stand ng goal mn the naturel scences. In pursuit of this
poal, neural mesiage sassing kas lead to a parsdigm shift by dascribing many-body corralations
of atoms through lteratively passing messages along ar atomiste graph  This propagation of
information, howavar, makes parallel computation difficult and lircits the lingth scales thst can
Le stuwdind, Stidly locel desaiptor-basesd eloaods, oo the other sl can scabs Lo Buge systeas
ke A ot cavencly mateh the high arcnracy ohserved with message passny appraaches Thic
work ntroduces Allegro, a strictly ozal equivatiant deep learsing nbecatomic potertial shat
simnltaramsly echihite avonllent serimsey and sealahilty of paralel compmtacior Allegra eams
nany-sedy functicns of aamic coerdinates usiag a secies of tensor procucts of learred ecuivariant
representations, but witaout ~elving on messag2 passing. Allegre cbiains improvamencs over state-
cf-he-art methods on the QM9 and revised MD-17 data sets. A singls tensor product layer is
shown to outperform excsting deep message passinz neural networks and irarsformers an the QM9
benchmarle. Furithermose, Alegro dicpaays remarkob.e generalization 1o out of distribution data
Molecular cynamles sivulaciors based pn Allegro recover swruciwral anc kinetic propertles of an
amorphoeus phasphate clectrolyte in excelleat agreamens with first principles calsulotions. Finally
we demonswate the parallel sceling of Allagre with & dynamiss simulaci>n of 100 million atoms.

INTRODIICTION

Moalecular dynamics (MD) and Mone-Carlo (MC)
simalation metkods for the astudy of sroserties of
molecules and muaterals arc & coce pillar of eomsutatienal
chemistry, materials science, and biclogy. Comrorn to a
diverse act of applications rangiag from energy materiala
1] to protein felding [2] is the requiremen: that
predicticns of the potential energy and the atomic fore2s
st be Loth sccurate and conputatiovaally eflicient wo
faltafully deseribe the evolution of complex systems over
long time scales. While fisst-prindples metaods such
as density functiosal theny (DFT), which exolicitly
treat tae slootroms of the system, provide an accurate
and transierable descsiptian ¢f the system, they exhibat
pooe scaling with system size anc thus limit practical
applicotions to emall eystoms and chort eimulation
times, Class.cal frea-lields based on simpe functions
of atomiz courdinstes are able tc scale to large systems
and long time zcales but ore inhoreatly Eraibed in ther
ficelity and can yield unfaitaful dynamics. Descriptions
of the potencial energy surface (PES] using mactine
leaming (ML) bave emerged os o sromisng approach
to move past this trade-off [3-24]. Machine learning

“Equal Contribution. Order is randam.
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interatomis potentials (MLIPS) aim o approximats a
set of higk-fidelity energy and farce labels at imoaroved
compatational effiziency that acales linecarly with the
nmmmber af atoms. A variety of diferent aspmaches
have been proposed, from saallow peuml networss and
kerve-based approaches [GHG] 10 more recent methods
based en deep loarning [14]115, 20] 23] 26]. In particular,
£ class of MLIF:s based on message passing neural
networks (MONNs) has shown cemakable eccuracy
(0,10 C4 15 25]127]. In interatomic potenticle based en
MPNN;5, an atomistic graph i nduced by connecting
with adges cach avan (node) w all veghboring aloms
inside a Enite sutoff ephors surroundiag the scnuml ator.
Iniormation 15 taen teratively propaga.ed slong this
praphy, allowing MPNN: to leain mary-Lody correlalions
end cecesz non Josel information outede of tae leeal
cutoff. 1hs terated propagabion, however, eads to
large receptive fizlds with many efeciive neighbors for
cazh atom, waich zlowe down parall2] computation and
limits the laeth scaes accessble Lo message passing
MLIPs. MLIPs using strictly iocal descriptons such as
Behler Parrinelo neural notworks [5], GAP [5], SNAP
(7], DaepML 20], Moment ‘Lensor Potentmls (5], or AUE
[12] do no: suffer from tais oostade due to their strict
Iscality. A3 a reauls they can easily be pamllelized across
deviees and have sueeesshilly hesn sealed to avtreme'y
large system sizes |28-31). App-oaches based on lecal
etom-densty based desaripiors, kowever, have so far
fallen hehind in acenraey enmpared to stato-o=the-a-t,
cquivarian, message passing interatomic poten:ials [15).
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Table 2: Performance comparis
ABSTRACT

Error (MAE) between model pyed

Task Qo £ 3
Units bohr® meV

non-linear no geometry NMP 092 69
regular R?> SchNet * 235 63
pseudo-linear steerable SE(3) Cormorant 085 61

steerable SE(3) L1Net 088 68

regular G LieConv 084 49

steerable SE(3) TFN 223 58

pseudo-linear steerable SE(3) SE(3)-Tr. 142 5

[nc.uding covariant information, such as position. force, velocity ar spin 1s impor-
lanl 1 1many @sss in compuladonal physics and chemistcy. We Diliodwee 3eerable
E{3) Equivariart Graph Ncural Nztworks (SEGNNs) that geacralise cquivariant
graph networks, such that node and edge attributas are not restricted to invariant
scalars, hiat czn contzim covariant mformanion, snch ag vectors or tensors. This
model. comrposed of steerable MLPs, is able to incorparate geometric and physical
information ix buth the message ad update functons. Through the defimten of
stecrable node attributes, the MLPs previde a new class of activation functions
for general use with st2erable festure fielcs. We discuss ours and related work
throng the lens ot eguivariant nondinear comolunons, which tu-ther allows ns 1o
pin-pont the successful components of SEGNNs: non-linzar message aggrezat.on
improves upon classic linear (steetabke) 2oint convolutions; stevialle messages
improve vpon recent cquivariart graph networks that s2ac mvaran: messages. We
demonstrate the effectivaness of our method on several tasks in computational
physics and chemistry and pravide eytensive abhlation smdies

1 [INTRCDUCTION

The suecess of Convolutional Nearal Networks (CNN:) (LeCun et al|, 1998;/2015; Schmidhuber,
2015; Krizhevsky eta., 2012) is a key factor “or the rise of deep learning, attributed to their capability
nf exploiting translation symmetries, herahy intrviucing a strong inductiva hias. Recen” wnrk has
'% S shown tat designing CNINs o explol: addidonal syirmetrdes via groap corvoludons has even further

axcreased el pesfozmarce  (Coben & Welling, 2016 2017, Worzall et al., 2027 Coliea e, al.,
2018; Kondor & Trivedi, 2018; Weiler at al., [ 201%; Bekkers et al | 2018 Bekkers, |2019; Weilar &

arXi1v:2110.02905v3 [cs.LG] 26 Mar 2022

- 3 2 + - * / C < D ' v : . y K 5
- / 2¢3, 2016) Graph neural networks (CNNs) and CNNs are closely related to 2ach cther viz their
non-linear I’egU|aI‘ R?) X Sz X R DlmeNet++ 0043 24 aggregatinn of local information. Mare precisely, CNNs czn be formnlated as message passing
= + -ayars (Gllmer 2t al, 2017) based on a sum aggregatcn of messages that are obtalned by relative
non- I Inear I’eg u |al’ R X S X R S phereN et * . 046 2 3 positior-dependent linear trensfarmations of neighbounirg ncde features. The power of message

passmny layers is, however, that noda features zre transformed and propagsted in a highly non-linear

=l ? . * manner. Equivariant GNNs have b2en proposed bafore as either Poin:Conv.type i(Wu et al | 2319;
non Ilnear reQUIeerabIe ) SE(B% PalNN °O45 27 Kristn™ et al | 2017) u‘_\;Iamenntinm of stzerahle [Thomas et al | 20 82 Andarsom et al | 2019; Fiachs
= et el 2020) ar regular group canvolutdons (Hinzl et el | 2020). The most impartant ccypenent in
non-llneal‘ I’eg u |al’ R EGNN .07 1 48 2 9 thc:;c. methods arc the ccnvolution leyers., Allh;ugh powerful, such layers enly (pscudd'| lincarly

transform the graphs ard non-lirearity i only obtaired via point- wise activations

4 2 2 4 'Metaods such as SE(3)-t-ansformers (Fuchs et al, 2020} and Cormorant [Andsmon et al,2019) inzlade an
mut-dependent ateaticn componeat thal augments the convolutians.,

non-linear steerable SE(3) SEGNN (Ours)
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AEBSTRACT

[nc.uding covariant information, such as position. force, velocity ar spin 1s impor-
laal 1 rmany esss incompulaional physics and chemistcy. We nitodwee 3 ecrable
E(3) Equivariart Graph Neural Notworks (SEGNNs) that geacralise cquivariant

graph networks, such that node and edge attributas are not restricted to invariant

Classic point convolutions

{Lecture 1.7: regular g-convs on homogensous spaces)

(Lecture 2: steerable g-convs)
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invariant Message Passing NNs

{Lacture 3)

mU = MLP(fp fs"X] — xi”)

wealars, hat czn contzin covariant mbormanion, snch ag vectors or tensors. Thig
model. comrposed of steerable MLPs, 1s able to incorporate geometric and physical
information ix buth the messaye ad update functons. Through the defimten of
stecrable node attributes, the MLPs previde a new class of activation functions
for general use with st2erable festure fielcs. We discuss ours and related work
throng the lens ot eguivariant nondinear comolunons, which tu-ther allows ns 1o
pin-pont the successful components of SEGNNs: non-linzar message aggrezat.on
improves upon classic linear (stecrablke) 2oint convolutions; sievialle messages
improve upon recent cquivariart graph networks that sead mvaran: messages. We
demonstrate the effectivaness of our method on several tasks in computational
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physics and chemistry and pravide eytensive abhlation smdies

1 [INTRCDUCTION

The suecess of Convolutional Nearal Networks (CNN:) (LeCun et al|, 1998;/2015; Schmidhuber,
2015; Krizhevsky eta’., 2012) is a key factor “or the rise of deep leamning, attributed to their capability
nf exploiting translation symmetries, herahy intrviucing a strong inductiva hias. Recen” wnrk has
shown tat designing CNINs o explol: addidonal syirmetrdes via groap corvoludons has even further
axcreased el pecfozmarce  (Cobea & Welling, 2016, 2017, Worzall et al., 2027, Coliea e, al.,
2018; Kondor & Trivedi, 2018; Weiler at al., [ 201%; Bekkers et al | 2018 Bekkers, |2019; Weilar &
C2sa, 2016) Graph neural networks (CNNs) and CNNs are closely related to 2ach cther viz their
aggregatinn of local information. More precisely, CNNs czan be formnlated as message passing
-ayzrs (Gllmer 2t al |, 2017) based on a sum aggregatcn of messages that are obralned by relative
positior-dependent linear trensfarmations of neighbourirg ncde features. The power of message
passmn layers is, however, that nods features cre transformed and propagated in a highly non-lincar
manner. Equivariant GNNs have b2en proposed bafore as either Poin:Conv.type i(Wu et al | 2319;
Kristn™ ot al | 2017) implementations of stzerahle [Thomas ef al | 20 % Andarson et al | 2019 Fiochs
et el., 2020) ar regular group canvoludions (Finzl e &l | 2020). The most impartant ccmpenent in
29 these methods arc the eonvolution leyers. Althougk powerful, such leycrs enly ipscudd'| lincarly
transform the graphs ard non-lirearity i only obtaired via point- wise activations

'Methods such as SE(2).transformers (Fuchs et al | [2020) and Cormorant [Andsmon et 2l 2019) nzlide an
mput-dependent aveaticn componeat thal augments the convolutions.
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